Haplotypes of catechol-O-methyltransferase modulate intelligence-related brain white matter integrity
نویسندگان
چکیده
Twin studies have indicated a common genetic origin for intelligence and for variations in brain morphology. Our previous diffusion tensor imaging studies found an association between intelligence and white matter integrity of specific brain regions or tracts. However, specific genetic determinants of the white matter integrity of these brain regions and tracts are still unclear. In this study, we assess whether and how catechol-O-methyltransferase (COMT) gene polymorphisms affect brain white matter integrity. We genotyped twelve single nucleotide polymorphisms (SNPs) within the COMT gene and performed haplotype analyses on data from 79 healthy subjects. Our subjects had the same three major COMT haplotypes (termed the HPS, APS and LPS haplotypes) as previous studies have reported as regulating significantly different levels of enzymatic activity and dopamine. We used the mean fractional anisotropy (FA) values from four regions and five tracts of interest to assess the effect of COMT polymorphisms, including the well-studied val158met SNP and the three main haplotypes that we had identified, on intelligence-related white matter integrity. We identified an association between the mean FA values of two regions in the bilateral prefrontal lobes and the COMT haplotypes, rather than between them and val158met. The haplotype-FA value associations modulated nonlinearly and fit an inverted U-model. Our findings suggest that COMT haplotypes can nonlinearly modulate the intelligence-related white matter integrity of the prefrontal lobes by more significantly influencing prefrontal dopamine variations than does val158met.
منابع مشابه
Sex‐specific effects of COMT Val158Met polymorphism on corpus callosum structure: A whole‐brain diffusion‐weighted imaging study
BACKGROUND Genetic polymorphisms play a significant role in determining brain morphology, including white matter structure and may thus influence the development of brain functions. The main objective of this study was to examine the effect of Val158Met (rs4680) polymorphism of Catechol-O-Methyltransferase (COMT) gene on white matter connectivity in healthy adults. METHODS We used a whole-bra...
متن کاملCOMT genotype affects brain white matter pathways in attention-deficit/hyperactivity disorder.
Increased dopamine availability may be associated with impaired structural maturation of brain white matter connectivity. This study aimed to derive a comprehensive, whole-brain characterization of large-scale axonal connectivity differences in attention-deficit/hyperactivity disorder (ADHD) associated with catechol-O-methyltransferase gene (COMT) Val158Met polymorphism. Using diffusion tensor ...
متن کاملImpact of interacting functional variants in COMT on regional gray matter volume in human brain
BACKGROUND Functional variants in the catechol-O-methyltransferase (COMT) gene have been shown to impact cognitive function, cortical physiology and risk for schizophrenia. A recent study showed that previously reported effects of the functional val158met SNP (rs4680) on brain function are modified by other functional SNPs and haplotypes in the gene, though it was unknown if these effects are a...
متن کاملCatechol-O-Methyltransferase Val158Met Polymorphism on the Relationship between White Matter Hyperintensity and Cognition in Healthy People
BACKGROUND White matter lesions can be easily observed on T2-weighted MR images, and are termed white matter hyperintensities (WMH). Their presence may be correlated with cognitive impairment; however, the relationship between regional WMH volume and catechol-O-methyltransferase (COMT) Val158Met polymorphism in healthy populations remains unclear. METHODS We recruited 315 ethnic Chinese adult...
متن کاملAssociation between catechol O-methyltransferase (COMT) haplotypes and severity of hyperactivity symptoms in adults.
It has been suggested that symptoms of attention-deficit/hyperactivity disorder (ADHD) is related to low dopamine levels in the prefrontal cortex. The enzyme catechol O-methyltransferase (COMT), which degrades dopamine and other catecholamines, is important for monoamine signaling in this brain-region, but genetic studies of the functional Val158Met (rs4680) polymorphism in ADHD have been incon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 50 1 شماره
صفحات -
تاریخ انتشار 2010